Зарегистрироваться
Seekland Info сообщество взаимопомощи студентов и школьников. / Seekland Info спільнота взаємодопомоги студентів і школярів.

Topic: ЗНО математика

Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 18.
...Зміст завдання : У прямокутнику ABCD: BC = 80, AC = 100. Через точки M і K, що належать сторонам AB і BC відповідно, проведено пряму, паралельну AC. Знайдіть довжину більшої сторони трикутника MBK, якщо BK = 20. А Б В Г Д 60 50 30 25 15 Теор...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 17.
...Продовжуємо вивчати завдання зно з математики 2012 Теорія до завдання: Розвяжіть нерівність$$(\frac{\pi}{4})^{x} <( \frac{4}{\pi} )^{3}$$ Відповіді до завдання: А Б В Г Д \((-3;+\infty)\) \((-3;+\infty)\) \((-\infty;3)\) \((-\infty;-3)\) \((-\infty;-\frac{1}{3})\) Теорія до...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 16.
...Зміст завдання : На рисунку зображено паралелограм ABCD, площа якого дорівнює 60 \(см^2\) . Точка М належить стороні BC. Визначте площу фігури, що складається з двох зафарбованих трикутників. Відповіді до завдання: А Б В Г Д \(45 см^2\) ...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 15.
...Зміст завдання : Висота правильної чотирикутної піраміди дорівнює 4 см, а її апофема — 5 см. Визначте косинус кута між площиною бічної грані піраміди і площиною основи. А Б В Г Д \(\frac{1}{5}\) \(\frac{3}{5}\) \(\frac{3}{4}\) \(\frac{4}{5}\) \(\frac...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 14.
...Зміст завдання : З міст А і В, відстань між якими по шосе становить 340 км, одночасно назустріч один одному виїхали авобус і маршрутне тексі зі сталими швидкостями 65 км/год і 80 км/год відповідно. Автобус і маршрутне таксі рухаються без зупинок і ще не...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 13.
...Зміст завдання : Якому проміжку належить значення виразу \(\sin 410^0\)? Відповіді до завдання:   А Б В Г Д (-1;-\(\frac{1}{2}\)) (-\(\frac{1}{2}\);\(\frac{1}{2}\)) (\(\frac{1}{2}\);\(\frac{\sqrt{2}}{2}\)) (\(\frac{\sqrt{2}}{2}\);\(\frac{\sqrt{3}}{2}\)) (\(\frac{\sqrt{3}}{2}\);1) Теорія до завд...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 12.
...Продовжуємо вивчати завдання зно з математики 2012. Зміст завдання : Прямокутник із сторонами 8 см і 10 см обертається навколо меньшої сторони (див. рисунок). Знайдіть площу повної поверхні отриманого тіла обертання?Відповіді до завдання: А Б...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 11.
...Зміст завдання : У залі кінотеатру 18 рядів. У першому ряду знаходяться 7 місць, а в кожному наступному ряду на 2 місця більше, ніж у попереднбому. Скільки всього місць у цьому залі? А Б В Г Д 432 438 369 450 864 Теорія до зав...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 10.
...Зміст завдання : На якому з наведених рисунків зображено ескіз графіка функції \(y = 4 - (x-1)^2\) ? Відповіді до завдання:Теорія до завдання: Для вирішення даного завдання необхідно визначити які перетворення були проведені над графіком функції \(y = x^2\)....
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 9.
...Зміст завдання : При якому значенні х вектори \(\overrightarrow a (2; x)\) і \(\overrightarrow b (-4; 10)\) перпендикулярні? Відповіді до завдання: А Б В Г Д 5 -0,8 0,8 5 20 Теорія до завдання: Два ненульови вектори перпендикулярні тоді й тільки тоді, коли їх скалярн...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 8.
...Зміст завдання : Запишіть числа \(\sqrt[3]{2}\)   , 1,  \(\sqrt[5]{3}\) в порядку зростання. Відповіді до завдання: А Б В Г Д \(1, \sqrt[3]{2}, \sqrt[5]{3}\) \(1,\sqrt[5]{3}, \sqrt[3]{2}\) \(\sqrt[3]{2},\sqrt[5]{3}, 1\) \(\sqrt[5]{3}, 1,\sqrt[3]{2}\) \(\sqrt[3]{2}, 1,\sqrt[5]{3}\) Теорія до завдання: Для вирішення дано...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 7.
...Зміст завдання : Пряма с перетинає паралельні прямі a і b (див. рисунок). Які з наведених тверджень є правильними для кутів 1, 2, 3? I   ∠ 1 і ∠ 3 — суміжні. II   ∠ 1 = ∠ 2. III   ∠2 + ∠3 = \(180^0\). Відповіді до завдання: А Б В Г Д лише І лише І і ІІІ лише ІІ...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 6.
...Продовжуємо вивчати завдання зно з математики 2012.  Зміст завдання :  Два фахівці розробили макет рекламного оголошення. За роботу вони отримали 5000 грн, розподіливши гроші таким чином: перший отримав четверту частину зароблених грошей, а другий ...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 5.
...Зміст завдання : На рисунку зображено графік функції \(y = f (x)\), визначеної на проміжку [-4; 4]. Знайдіть множину всіх значень \(x\), для яких \(f (x) ≤ -2\). Відповіді до завдання: А Б В Г Д [0;3] [-3;2] [-1;4] [-3;-2] [-4;0] Рішення: на малюнку зображена синусої...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 4.
...Зміст завдання : Яка з наведених точок належить осі ОZ прямокутної системи координат у просторі? Відповіді до завдання: А Б В Г Д M(0;-3;0) N(3;0;-3) K(-3;0;0) L(-3;3;0) F(0;0;-3) Теорія до завдання: Трійка взаємно перпендікулярних осей зі спільним почат...