Задание: найди предел: $$ \lim_{x\to 4} \frac{5x-x^2-4}{x^2-2x-8}$$
Решение:
Найдем предел $$ \lim_{x\to 4} \frac{5x-x^2-4}{x^2-2x-8} = \lim_{x\to 4} \frac{5*4-4^2-4}{4^2-2*4-8} = \frac{0}{0}$$ получили неопределенность вида \(\frac{0}{0}\).
Данную неопределенность можно разрешать применяя метод Лопиталя.
Правило Лопиталя:
Правило Лопиталя: если \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}\), то $$ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = \frac{f'(a)}{g'(a)}$$
Для применением правила Лопиталя необходима неопределенность вида \(\frac{0}{0}\), которой мы получили раннее, поэтому можно применить правило Лопиталя: $$ \lim_{x\to 4} \frac{5x-x^2-4}{x^2-2x-8} = \lim_{x\to 4} \frac{(5x-x^2-4)'}{(x^2-2x-8)'} = $$находим отдельно производные числителя и знаменателя$$ = \lim_{x\to 4} \frac{5-2x}{2x-2} = \frac{5 -2*4}{2*4-2} = -\frac{3}{6} = -\frac{1}{2}$$
Ответ: \( \lim_{x\to 4} \frac{5x-x^2-4}{x^2-2x-8} = -\frac{1}{2}\)