Зарегистрироваться
Seekland Info сообщество взаимопомощи студентов и школьников. / Seekland Info спільнота взаємодопомоги студентів і школярів.

Topic: зовнішнє незалежне оцінювання

Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 26.
...Зміст завдання: Скільки існує різних дробів \(\frac{m}{n}\), якщо m набуває значень 1; 2 або 4, а n набуває значень 5; 7; 11; 13 або 17. Рішення: Дробі різні, якщо чисельник і знаменник у дробів різні. З умови задачі випливає, що чисельник може мати 3 різні комбінаці...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 25.
...Зміст завдання : Батьки разом із двома дітьми: Марійкою (4 роки) та Богданом (7 років) - збираються провести вихідний день у парку атракціонів. Батьки дозволяють кожній дитині відвідати не більше трьох атракціонів і кожний атракціон - лише по одному ...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 24.
...Зміст завдання : На рисунку зображено куб  \(ABCDA_{1}B_{1}C_{1}D_{1}\). До кожного початку речення (1-4) доберіть його закінчення (А-Д) так, щоб урворилося правильне твердження.   1 Пряма \(СВ\)   А паралельна площині \(AA_{1}B_{1}B \) 2 Пряма \(CD_{1}\)  ...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 23.
...Зміст завдання : Розв'яжіть рівняння (1-4). Установіть вдповідність між кожним рівнянням та кількістью його коренів (А-Д) на відразку [-5; 5]. 1 \(\cos^2x-\sin^2x=1\) А жодного 2 \(\log_{3}x=-2\)   Б один 3 \(\frac{x^3-4x}{x^3+8}=0\)   В два ...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 22
...Зміст завдання : Кожній точці (1-4) поставте у відповідність функцію (А-Д), графіку якої належить ця точка. 1 О(0; 0) А \(y=2x+2\) 2 M(0; -1)   Б \(y= ctg x\) 3 N(-1; 0)   В \(y = tg x\) 4 K(0; 1)   Г \(y= \sqrt{x}-1\)         Д \(y = ...
Sheldon Cooper
Sheldon Cooper Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 21.
...Зміст завдання : До кожного виразу (1-4) при a>0 доберіть тотожно йому рівний (А-Д). 1 \(\frac{2a^5}{a^6}\) А \(32a^{11}\) 2 \((2a)^5a^6\)   Б \(2a^{\frac{5}{6}}\) 3 \((2a^6)^5\)   В \(2a^{\frac{3}{5}}\) 4 \(\sqrt[6]{64a^5}\)   Г \(2a^{-1}\)         Д \(32a^{...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 20.
...Продовжуємо вивчати завдання зно з математики 2012 Зміст завдання : Функція \(f(x)\) має в точці xο похідну \(f'(x_{0}) = -4\) . Визначте значення похідної функції \(g(x) = 2*f(x) + 7x - 3\) в точці x_{ο}. Відповіді до завдання: А Б В Г Д 15 12 -1 -4 ...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 19.
...Зміст завдання : Укажіть множину всіх значень a, при яких виконується рівність \(|a^3-a^2| = a^3-a^2\)   А Б В Г Д (-∞;  -1] υ [ 1;  ∞) [ 1;  ∞) ( -∞;  -1] υ { 0 } [ 0;  1 ] { 0 } υ [ 1; ∞)   Теорія до завдання: Абсолютна величина або модуль числ...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 18.
...Зміст завдання : У прямокутнику ABCD: BC = 80, AC = 100. Через точки M і K, що належать сторонам AB і BC відповідно, проведено пряму, паралельну AC. Знайдіть довжину більшої сторони трикутника MBK, якщо BK = 20. А Б В Г Д 60 50 30 25 15 Теор...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 17.
...Продовжуємо вивчати завдання зно з математики 2012 Теорія до завдання: Розвяжіть нерівність$$(\frac{\pi}{4})^{x} <( \frac{4}{\pi} )^{3}$$ Відповіді до завдання: А Б В Г Д \((-3;+\infty)\) \((-3;+\infty)\) \((-\infty;3)\) \((-\infty;-3)\) \((-\infty;-\frac{1}{3})\) Теорія до...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 16.
...Зміст завдання : На рисунку зображено паралелограм ABCD, площа якого дорівнює 60 \(см^2\) . Точка М належить стороні BC. Визначте площу фігури, що складається з двох зафарбованих трикутників. Відповіді до завдання: А Б В Г Д \(45 см^2\) ...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 15.
...Зміст завдання : Висота правильної чотирикутної піраміди дорівнює 4 см, а її апофема — 5 см. Визначте косинус кута між площиною бічної грані піраміди і площиною основи. А Б В Г Д \(\frac{1}{5}\) \(\frac{3}{5}\) \(\frac{3}{4}\) \(\frac{4}{5}\) \(\frac...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 14.
...Зміст завдання : З міст А і В, відстань між якими по шосе становить 340 км, одночасно назустріч один одному виїхали авобус і маршрутне тексі зі сталими швидкостями 65 км/год і 80 км/год відповідно. Автобус і маршрутне таксі рухаються без зупинок і ще не...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 13.
...Зміст завдання : Якому проміжку належить значення виразу \(\sin 410^0\)? Відповіді до завдання:   А Б В Г Д (-1;-\(\frac{1}{2}\)) (-\(\frac{1}{2}\);\(\frac{1}{2}\)) (\(\frac{1}{2}\);\(\frac{\sqrt{2}}{2}\)) (\(\frac{\sqrt{2}}{2}\);\(\frac{\sqrt{3}}{2}\)) (\(\frac{\sqrt{3}}{2}\);1) Теорія до завд...
Sheldon Cooper
Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 12.
...Продовжуємо вивчати завдання зно з математики 2012. Зміст завдання : Прямокутник із сторонами 8 см і 10 см обертається навколо меньшої сторони (див. рисунок). Знайдіть площу повної поверхні отриманого тіла обертання?Відповіді до завдання: А Б...