Составим каноническое уравнение эллипса, проходящее через две точки \(А(0;-2), В( \sqrt{ \frac{15}{2}}; 1)\) для этого воспользуемся формулой канонического уравнения эллипса $$ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad (1)$$ Две точки даны в условии, чтобы подставить их в каноническое уравнение эллипса, составить систему уравнений и найти полуоси \(a\) и \(b\).
Составим систему уравнений $$\begin{cases} \frac{0^2}{a^2} + \frac{(-2)^2}{b^2} = 1 \\\frac{(\sqrt{ \frac{15}{2}})^2}{a^2} + \frac{(1)^2}{b^2} = 1 \end{cases} => $$$$\begin{cases}b^2 = 4 \\\frac{15}{2a^2} + \frac{1}{4} = 1 \end{cases} =>
\begin{cases}b = 2 \\ a = \sqrt{10} \end{cases}$$Подставляем полученные значения полуосей в каноническое уравнение эллипса и получаем каноническое уравнение эллипса, проходящее через две заданные точки $$\frac{x^2}{10} + \frac{y^2}{4} = 1$$