Зарегистрироваться
Seekland Info сообщество взаимопомощи студентов и школьников. / Seekland Info спільнота взаємодопомоги студентів і школярів.

Даны координаты вершин пирамиды ABCD


1 Vote
Maximka Dominikov
Posted Октябрь 22, 2015 by Maximka Dominikov
Категория: Аналитическая геометрия
Всего просмотров: 42248

Даны координаты вершин пирамиды ABCD


Требуется:
1) Записать векторы АВ, АС и АD в системе орт  i , j , k  и найти модули этих векторов;
2) найти угол между векторами АВ и АС;
3) найти проекцию вектора АD на вектор АС; 
4) найти площадь  грани АВС;
5) найти объем пирамиды АВСD. 


Где A(-4;5;-5), B(3;3;-3), C(7;7;5), D(4;9;3)

Теги: векторы в пространстве, метод координат, сумма векторов, скалярное произведение векторов

Все ответы


2 Голосов
Вячеслав Морг
Posted Октябрь 25, 2015 by Вячеслав Моргун

1. Записать векторы \(\vec{АВ}\), \(\vec{АС}\) и \(\vec{АD}\) в системе орт  \(i , j , k\)  и найти модули этих векторов;
Векторы в пространстве определяются так же, как и на плоскости.
Вектор - это направленный отрезок, имеющий начало и конец. Только в пространстве вектор задается тремя координатами x, y и z: \( \vec{a}(x_a ; y_a ; z_a )\) 
Координаты вектора находятся— из координаты конца вычитаем координату начала \( \vec{a} =  \vec{AB}(x_B − x_A ; y_B − y_A ; z_B − z_A )\)
Найдем вектора:
\(\vec{AB}(-3-(-4); 3-5;-3-(-5)) => \vec{AB}(1; -2; 2)\) 
\(\vec{AC}(7-(-4); 7-5; 5-(-5)) => \vec{AC}(11;2; 10)\)  
\(\vec{AD}(4-(-4); 9-5; 3-(-5)) => \vec{AD}(8;4; 8)\)   


Длина вектора \( |\vec{a}| = \vec{AB}\) в пространстве (модуль вектора) –– это расстояние между точками \(A\) и \(B\). Находится как корень квадратный из суммы квадратов координат вектора: $$ |\vec{a}| = \sqrt{x^2_a + y^2_a + z^2_a} = \sqrt{ (x_B − x_A )^2 + (y_B − y_A )^2 + (z_B − z_A )^2}$$
Найдем длины (модули) векторов:
 \( |\vec{AB}| =  \sqrt{1^2+(-2)^2+2^2} = 3\) 
 \( |\vec{AC}| = \sqrt{11^2+2^2+10^2} = 15\)   
 \( |\vec{AD}| = \sqrt{8^2+4^2+8^2} = 12\)