Рішення: областю визначення функції \(z = f(x;y)\) називається множина точок (x;y) площини xOy, у яких задана функція набуває певного дійсного значення.
Задана функція визначена, якщо підкореневий вираз \(\sqrt{x}\) невід'ємний \(x \geq 0\) та \(x \ne 0\) тобто \( x > 0\), також логарифмічна функція \(\ln(x+2y-1)\) визначена, якщо аргумент логарифма задовольняє нерівність \(x+2y-1 > 0\), таким чином для функції \(z=\frac{1}{\sqrt{x}}+\ln(x+2y-1)\) область визначення знаходимо із системи:
$$\begin{cases}x > 0 \\x+2y-1 > 0\end{cases} => \begin{cases}x > 0 \\ y > \frac{1}{2} - \frac{1}{2}x\end{cases}$$
\(x > 0 \) - півплощина, розміщена праворуч осі Oy
\( y > \frac{1}{2} - \frac{1}{2}x \) - півплощина, розміщена вище прямої \(y = \frac{1}{2} - \frac{1}{2}x\)