Помогите упростить $$(\frac{3}{c+3*c^{\frac{1}{2}}}+\frac{c}{9-c}:\frac{c^{3/2}}{3c^{1/2}-c})^{-2}$$
$$(\frac{3}{c+3*c^{\frac{1}{2}}}+\frac{c}{9-c}:\frac{c^{\frac{3}{2}}}{3c^\frac{1}{2}-c})^{-2}=(\frac{3}{c^ \frac{1}{2}(c^ \frac{1}{2}+3)}+\frac{c}{(3-c^\frac{1}{2})(3+c^\frac{1}{2})}* \frac{3c^\frac{1}{2}-c}{c^\frac{3}{2}})^{-2}=$$$$=(\frac{3}{c^ \frac{1}{2}(c^ \frac{1}{2}+3)}+\frac{c}{(3-c^ \frac{1}{2})(3+c^ \frac{1}{2})}* \frac{c^ \frac{1}{2}(3-c^ \frac{1}{2})}{c^ \frac{3}{2}})^{-2}=$$$$(\frac{3}{c^ \frac{1}{2}(c^ \frac{1}{2}+3)}+ \frac{1}{(3+c^ \frac{1}{2})})^{-2}=(\frac{3+c^ \frac{1}{2}}{c^ \frac{1}{2}(c^ \frac{1}{2}+3)})^{-2}=(\frac{1}{c^ \frac{1}{2}})^{-2}=(c^\frac{1}{2})^{2}=c$$