Решение: Вероятность будем искать по формуле классического определения вероятности \(P = \frac{m}{n}\), где \(n\) - число всех равновозможных несовместных элементарных исходов, образующих полную группу, а \(m\) - количество благоприятствующих событию исходов.
Найдем \(n\). При каждом броске возможно 6 различных исходов. Общее количество исходов после двух бросков равно \(n = 6*6 = 36\)
Найдем \(m\). найдем благоприятствующие событию исходы, т.е. сумма очков меньше 5
\((1;1) \quad (1;2) \quad (1;3) \)
\((2;1) \quad (2;2)\)
\((3;1)\)
получили \(m = 6\) исходов.
Вероятность равна $$P = \frac{m}{n} = \frac{6}{36} =\frac{1}{6}$$
Ответ: вероятность того, что в сумме выпадет меньше 5 очков равна \(P = \frac{1}{6}\)