Данная задача на умение составить систему уравнений движений каждого объекта. Составим уравнения движения велосипедистов, для этого введем обозначения:
- \(v_1\) - скорость первого велосипедиста
- \(v_2\) - скорость второго велосипедиста
- \(t\) - время движения второго велосипедиста из пункта \(A\) до места встречи.
Теперь можно составить все уравнения движения. Для составления системы уравнений и ее решения нам необходимо 3 уравнения, т.к. у нас 3 неизвестные
- первый велосипедист ехал до встречи 10+\(t\) часов, а второй \(t\) часов, при этом первый велосипедист проехал на 45 км больше, чем второй. Запишем это в виде формулы \(v_1*(t+10)-v_2t=45\).
- весь пройденный путь у нас состоит из двух участков - до \(S_1\) и после точки \(S_2\) встречи. Запишем уравнения для участка до точки встречи. Из условия известно, что этот участок первый велосипедист проехал \(S_1=v_1(10+t)\), а второй \(S_1=7v_2\), приравняем и получим второе уравнение \(v_1(10+t)=7v_2\).
- запишем уравнения для участка после точки встречи \(S_2\). Из условия известно, что этот участок первый велосипедист проехал \(S_2=8v_1\), а второй \(S_2=v_2t\), приравняем и получим второе уравнение \(8v_2=v_2t\).
Составим систему уравнений и решим ее $$\begin{cases}v_1*(t+10)-v_2t=45\\ v_1(10+t)=7v_2\\ 8v_2=v_2t \end{cases}=>\begin{cases}v_1*(t+10)-v_2t=45\\ v_1(10+8\frac{v_1}{v_2})=7v_2\\ t=8\frac{v_1}{v_2} \end{cases}=>$$$$\begin{cases}v_1*(t+10)-v_2t=45\\ 8v_1^2+10v_1v_2-7v_2^2=0\\ t=8\frac{v_1}{v_2} \end{cases}=>$$Решим квадратное уравнение$$8v_1^2+10v_1v_2-7v_2^2=0=>v_1= \frac{-10v_2 \pm \sqrt{100v_2^2+4*8*7v_2^2}}{2*8}=\frac{-10v_2 \pm 18v_2}{16}$$т.к. скорость бывает только положительной, то выбираем положительный корень $$v_1=\frac{-10v_2 + 18v_2}{16}=\frac{1}{2}v_2$$Получили зависимость между скоростями. Подставим полученное решение в систему уравнений и продолжим ее решение $$\begin{cases}v_1*(t+10)-v_2t=45\\v_1=\frac{1}{2}v_2\\ t=8\frac{v_1}{v_2} \end{cases}=>\begin{cases}v_1*(t+10)-v_2t=45\\v_1=\frac{1}{2}v_2\\ t=4 \end{cases}=>$$$$\begin{cases}\frac{1}{2}v_2*(4+10)-v_2*4=45\\v_1=\frac{1}{2}v_2\\ t=4 \end{cases}=>\begin{cases} 7v_2-v_2*4=45\\v_1=\frac{1}{2}v_2\\ t=4 \end{cases}=>\begin{cases} v_2=15\\v_1=7,5\\ t=4 \end{cases}=>$$Ответ: скорость второго велосипедиста равна \(v_2=15\)км/ч.