Зарегистрироваться
Seekland Info сообщество взаимопомощи студентов и школьников. / Seekland Info спільнота взаємодопомоги студентів і школярів.

Вектор \(\vec{c}\) перпендикулярен векторам \(\vec{a}\) и \(\vec{b}\), причем


0 Голосов
Татьяна
Posted Ноябрь 23, 2013 by Татьяна
Категория: Алгебра
Всего просмотров: 2846

Вектор \(\vec{c}\) перпендикулярен векторам \(\vec{a}\) и \(\vec{b}\), причем \(\widehat{a^b}=\frac{p}{6}\), \(|a|=6\), \(|b|=3\), \(|c|=3\). Найти a*b*c.

Теги: векторное произведение трех векторов, скалярное произведение векторов

Лучший ответ


1 Vote
Вячеслав Морг
Posted Ноябрь 23, 2013 by Вячеслав Моргун

Для любых трех векторов \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) справедливо равенство $$\vec{a}x(\vec{b}x\vec{c}) = \vec{b}\cdot(\vec{a}\vec{c})-\vec{c}\cdot(\vec{a}\vec{b})$$ Результатом двойного векторного произведения является вектор. Из формулы ясно, что двойное векторное произведение может быть выражено через линейные операции над векторами и скалярное произведение.
Найдем искомый вектор, для этого:
найдем скалярные произведения векторов $$(\vec{a}\vec{c}) = |\vec{a}||\vec{c}|\cdot\cos(\widehat{ac}) =0$$т.к. согласно условия задачи вектор \(\vec{c}\) перпендикулярен вектору \(\vec{a}\)
найдем скалярные произведения векторов $$(\vec{a}\vec{b}) = |\vec{a}||\vec{b}|\cdot\cos(\widehat{ab}) = 6*3*\cos(\frac{\pi}{6})=18*\frac{\sqrt{3}}{2} = 9\sqrt{3} $$
Получили $$\vec{a}x(\vec{b}x\vec{c}) =  -9\sqrt{3}\cdot\vec{c}$$


Другие ответы


0 Голосов
Татьяна
Posted Ноябрь 24, 2013 by Татьяна

Да. 


0 Голосов
Вячеслав Морг
Posted Ноябрь 23, 2013 by Вячеслав Моргун

Уточни, нужно найти векторное произведение трех векторов?