Доброго дня)
Извините, что пишу прямо здесь ( при попытке отправить сообщение - почему-то пишет "unable to send a private message.."). Решение - да, верное. Но придерутся к объяснению, почему имеем право "убрать" \(cos^2(x)\) (т.е. разделить на него). ОДЗ тангенса - "не то", потому что мы и тангенсы здесь сами придумали ( когда захотели вынести \(cos^2(x)\) ). Здесь имеем право разделить на этот \(cos^2(x)\) просто "потому что нам так хочется" - точнее, если делим на выражение с переменной - то сначала отдельно проверяем, может ли это выражение быть =0 (т.е. могут ли быть корнями те x, при которых это выражение = 0). Т.е. сначала отдельно рассматриваем случай \(cosx =0\), и убеждаемся, что тогда такие x ( при которых \(cos x=0\) ) все равно не будут корнями уравнения - так как подставив в уравнение "косинус = 0", получаем: \(4\sin^2(x) = 0\) - но синус и косинус одного и того же x не могут быть равны нулю одновременно. Т.е. дальше можем рассматривать те x, для которых \(cos x \ne 0\) - и поэтому на него можем делить..
P.S. sorry за "умничание".. просто если это сдавать в школе - придерутся точно.. ( а объяснят, к чему придрались, или нет - ? )