Зарегистрироваться
Seekland Info сообщество взаимопомощи студентов и школьников. / Seekland Info спільнота взаємодопомоги студентів і школярів.

Исследовать на сходимость ряд $$\sum_{n=1}^{\infty}\frac{(-1)^{n+1}n^2}{3^n}$$


0 Голосов
Егор Сименков
Posted Октябрь 26, 2013 by Егор Сименков
Категория: Математический анализ
Всего просмотров: 1502

Исследовать на сходимость ряд $$\sum_{n=1}^{\infty}\frac{(-1)^{n+1}n^2}{3^n}$$

Теги: сходимость знакопеременных рядов, признак Лейбница

Лучший ответ


0 Голосов
Вячеслав Морг
Posted Октябрь 26, 2013 by Вячеслав Моргун

Применим признак Лейбница для исследования на сходимость знакопеременного ряда: если \(a_n=(-1)^nb_n, b_n>0\) и последовательность \(b_n\) начиная с некоторого номера \(n_0\) монотонно стремится к нулю, то ряд \(\sum_{n=1}^{\infty}a_n\) сходится.


Для применения признака Лейбница проведем преобразование $$\sum_{n=1}^{\infty}\frac{(-1)^{n+1}n^2}{3^n} = \sum_{n=1}^{\infty}\frac{(-1)^{n}(-1)n^2}{3^n} = (-1)*(\sum_{n=1}^{\infty}\frac{(-1)^{n}n^2}{3^n})$$ Исследуем на сходимость ряд \(\sum_{n=1}^{\infty}\frac{(-1)^{n}n^2}{3^n}\). В нашем случае последовательность \(a_n\) будет равна \(a_n=\frac{(-1)^{n}n^2}{3^n}\), где \(b_n=\frac{n^2}{3^n}\) - эта последовательность положительная, нужно проверить, что при \(n \to \infty\) \(b_n \to 0\). Проверяем $$\lim_{n \to \infty}\frac{n^2}{3^n} = \frac{\infty}{\infty}$$Получили неопределенность вида \(\frac{\infty}{\infty}\), поэтому применим правило Лопиталя $$\lim_{n \to \infty}\frac{n^2}{3^n} = \lim_{n \to \infty}\frac{2n}{3^n*\ln 3} =$$Опять неопределенность вида \(\frac{\infty}{\infty}\) повторно применим правило Лопиталя $$= \lim_{n \to \infty}\frac{2}{3^n*\ln^2 3} =0$$Т.о. по признаку Лейбница ряд сходится.