Докажем тригонометрическое тождество. Обратим внимание на то, что на угол \(ctg\frac{x}{4}\), т.е. приведем все тригонометрические функции слева тождества к этому углу. Применим формулы косинуса и синуса двойного угла \(\cos2x = \cos^x - \sin^x\) и \( \sin2x = 2\sin x * \cos x \). Будем приводить левую часть тождества к правой $$\frac{1+\cos\frac{x}{2}-\sin\frac{x}{2}}{1-\cos\frac{x}{2} - \sin\frac{x}{2}} = \frac{\cos^2\frac{x}{4} + \sin^2\frac{x}{4}+\cos^2\frac{x}{4} - \sin^2\frac{x}{4} - 2\sin\frac{x}{4}*\cos\frac{x}{4}}{\cos^2\frac{x}{4} + \sin^2\frac{x}{4}-\cos^2\frac{x}{4} + \sin^2\frac{x}{4} - 2\sin\frac{x}{4}*\cos\frac{x}{4}} = $$$$= \frac{2\cos^2\frac{x}{4} - 2\sin\frac{x}{4}*\cos\frac{x}{4}}{ 2\sin^2\frac{x}{4} - 2\sin\frac{x}{4}*\cos\frac{x}{4}} = \frac{2\cos\frac{x}{4}}{2\sin\frac{x}{4}} * \frac{\cos\frac{x}{4} - \sin\frac{x}{4}}{ \sin\frac{x}{4} - \cos\frac{x}{4}} = - ctg\frac{x}{4}$$Тождество доказано.