3. угол В в радианах с точностью до двух знаков
Угол B - угол между прямыми AB и BC - \(\angle ABC = \beta \) будем искать по формуле $$ tg \beta = |\frac{k_2-k_1}{1+k_1k_2}| \quad (3)$$ где \(k_1,k_2\) - угловые коэффициенты прямых \(k_{AB} = -\frac{3}{4} \quad k_{BC} = \frac{11}{2} \), подставляем в (3) $$tg \beta = |\frac{ \frac{11}{2} + \frac{3}{4}}{1-\frac{11}{2}\frac{3}{4} }| = 2 => \beta = 1.11 рад$$
Ответ: угол между прямыми AB и BC равен \( \angle \beta = 1.11 рад\)
4. уравнение высоты СD и ее длину;
высота СD равна расстоянию от точки C до прямой AB, применим формулу расстояния от точки до прямой по формуле $$d = \frac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}} \quad (4)$$ где уравнение \(Ax+By+C=0\) - уравнение прямой в общем виде, а \(x_0;y_0\) - координаты точки, расстояние от которой до прямой равно \(d\), в нашем случае это C(12;23)
Получим уравнение прямой AB в общем виде \( y = 7 - \frac{3}{4}x => \frac{3}{4}x + y - 7 =0\). Подставляем уравнение прямой и координаты точки в формулу (4) $$d_{CD} = \frac{| \frac{3}{4}*12 + 1*23 - 7|}{\sqrt{(\frac{3}{4})^2+1^2}} = 20$$
Ответ: длина высоты CD равна \(d = 20\)
уравнение высоты CD
Найдем уравнение прямой CD, которая перпендикулярна AB. Воспользуемся свойством угловых коэффициентов перпендикулярных прямых $$k_1*k_2=-1 \quad (5)$$ Угловой коэффициент одной перпендикулярной прямой известен \(k_{AB} = -\frac{3}{4} => \) из формулы (5) получаем угловой коэффициент прямой CD равный \(k_{CD} = \frac{4}{3}\).
Найдем уравнение прямой CD, для этого воспользуемся уравнением прямой проходящей через заданную точку в заданном направлении $$ y - y_0 = k(x - x_0) \quad (6)$$ заданная точка C(12;23), а заданное направление это угловой коэффициент \(k_{CD} = \frac{4}{3}\), получим $$ y - 23 = \frac{4}{3}(x -12) => y = \frac{4}{3}x + 7$$
Ответ: уравнение высоты CD \( y = \frac{4}{3}x + 7 \)
5. уравнение медианы АЕ и координаты точки К пересечения этой медианы с высотой СD;
Уравнение медианы AE.
Для нахождения медианы AE есть координата одной точки A(-4;10), а координаты второй точки прямой E найдем как координаты середины отрезка \(BC\), где B(8;1) C(12;23) по формуле \( E(\frac{x_B+x_C}{2};\frac{y_B+y_C}{2})\) => \( E(\frac{8+12}{2};\frac{1+23}{2}) \) => \( E( 10; 12) \)
Находим уравнение прямой \(AE\) по формуле уравнения прямой, проходящей через две заданные точки \(A\) и \(E\) уравнение (1)$$ \frac{x+4}{10+4}=\frac{y-10}{12-10} => y = \frac{1}{7}x + \frac{74}{7}$$
Ответ: уравнение медианы \( y = \frac{1}{7}x + \frac{74}{7}\)
Координаты точки К пересечения этой медианы с высотой СD
Найдем координаты точки пересечения K высоты CD и медианы AE, составим систему уравнений $$\begin{cases} y = \frac{4}{3}x + 7 \\ y = \frac{1}{7}x + \frac{74}{7} \end{cases} => \begin{cases} x =3 \\y = 11 \end{cases} $$
Ответ: координаты точки пересечения K высоты CD и медианы AE \(K(3;11)\)
6. уравнение прямой, проходящей через точку К параллельно стороне АВ;
Воспользуемся свойством угловых коэффициентов параллельных прямых $$k_1=k_2 \quad (7)$$ Угловой коэффициент известной \(k_{AB} = -\frac{3}{4} => \).
Найдем уравнение искомой прямой , для этого воспользуемся уравнением прямой проходящей через заданную точку в заданном направлении $$ y - y_0 = k(x - x_0) $$ заданная точка K(3;11), а заданное направление это угловой коэффициент \(k_2 = -\frac{3}{4}\), получим $$ y - 11 = -\frac{3}{4}(x - 3) => y = -\frac{3}{4}x + \frac{53}{4}$$
Ответ: уравнение прямой , которая параллельна стороне AB и проходит через точку K равно \(y = -\frac{3}{4}x + \frac{53}{4} \)
7. координаты точки М, симметричной к точке А относительно прямой СD
Точка A лежит на стороне AB, для которой известна высота CD, таким образом, точки A и M лежат на стороне AB симметрично относительно высота CD. Для нахождения координат точки M найдем координаты точки D, как точки пересечения двух прямых AB и CD. Решим систему уравнений $$\begin{cases} y = 7 - \frac{3}{4}x \\y = \frac{4}{3}x + 7\end{cases} => \begin{cases} y = 7 \\x = 0\end{cases}$$ найдем координаты точки M, решим систему уравнений $$\begin{cases}x_M = x_A + 2(x_D-x_A) \\ y_M = y_A + 2(y_D-y_A)\end{cases} =>\begin{cases}x_M = -4 + 2(0+4) \\ y_M = 10 + 2(7-10)\end{cases} => \begin{cases}x_M = 4 \\ y_M = 4 \end{cases} $$
Ответ: координаты точки М, симметричной к точке А относительно прямой СD равны M(4;4)