Решение: найдем неопределенный интеграл \( \int e^{\sqrt{x}} \frac{dx}{ \sqrt{x}}\), находить будем методом замены независимой переменной. Введем замену \(\sqrt{x} = t => \frac{1}{2\sqrt{x}}dx = dt\). Подставляем замену в интеграл $$ \int e^{\sqrt{x}} \frac{dx}{ \sqrt{x}} = \int e^{t} 2dt = 2e^{t} +C = $$ применяем обратную замену \( t \sqrt{x}\), получаем $$ = 2e^{ \sqrt{x}} +C$$
Ответ: \( \int e^{\sqrt{x}} \frac{dx}{ \sqrt{x}} = 2e^{ \sqrt{x}} +C$\)