Найдем несобственный интеграл: \( \int_4^5\frac{1}{(x-4)^2}dx \)
Решение: если функция \(f(x)\) определена при \( a < x \leq b\), интегрирована на любом отрезке \((a+\epsilon;b], \quad 0 < \epsilon < b-a \) и ограничена в точке \(a\), тогда предел $$ \int_{a + \epsilon}^{b}f(x)dx$$ при \(\epsilon \to 0\) называется несобственным интегралом второго рода: $$\int_a^bf(x) = \lim_{ \epsilon \to 0} \int_{a+\epsilon}^{b}f(x)dx $$ Исходя из определения несобственного интеграла второго рода, вычислим интеграл $$ \int_4^5\frac{1}{(x-4)^2}dx = $$ Подынтегральная функция неограниченна в окрестности точки \(x =4 \), но она непрерывна и интегрирована на отрезке \( (4+\epsilon; 5|\). В соответствии с определением получаем $$ = \lim_{ \epsilon \to 0} \int_{4+\epsilon}^5\frac{1}{(x-4)^2}dx = $$ применим формулу Ньютона-Лейбница \( \int_a^bf(x)dx = F(x)|_a^b = F(b) - F(a) \), получим $$ = \lim_{\epsilon \to 0}(-\frac{1}{x-4}) |_{4+\epsilon}^5 = -\lim_{\epsilon \to 0} (\frac{1}{5-4} - \frac{1}{4 + \epsilon - 4})= \infty$$ Несобственный интеграл не имеет конечного предела, т.е. он расходится
Ответ: несобственный интеграл \( \int_4^5\frac{1}{(x-4)^2}dx \) расходится.