Если количество независимых испытаний достаточно большое применения формулы Бернулли становится трудоемким. Для упрощения вычислений применяют локальную и интегральную теоремы Лапласа, которые дают близкий к формуле Бернулли результат при большом количестве испытаний и не требуют больших вычислений.
Вероятность того, что в \(n\) независимых испытаниях с вероятностью появления события \(A\) равной \(0 < P < 1\) событие наступит ровно раз \(k\) (безразлично в какой последовательности) определяется по приближенной формуле $$P_n(k) = \frac{1}{\sqrt{npq}} \phi(x)$$ где \(\phi(x)\) - функция Гаусса
\(x = \frac{x - np}{ \sqrt{npq}}\) - аргумент функции Гаусса
Теорему Лапласа рекомендуется применять при значениях произведения \(npq > 10; \), в противном случае погрешность вычисления будет высокая. Проверяем \( 10000*0.003*0.997 \approx 29.92 > 10 \),
также учтем, что функция Гаусса - четная функция \(\phi(-x) = \phi(x)\)
Найдем аргумент функции Гаусса \(x = \frac{k - np}{ \sqrt{npq}} = \frac{2-10000*0.003}{\sqrt{10000*0.003*0.997}} = -5.11976\)
$$ \phi( -5.11976) = \phi(5.11976) = 1.64895*10^{-12}$$ нашли по таблице Гаусса
Вероятность равна $$P_{10000}(2) = \frac{1}{\sqrt{npq}} \phi(x) = $$$$ \frac{1}{\sqrt{ 10000*0.003*0.997}}*1.64895*10^{-12} \approx 3.01508 × 10^{-13}$$
формула Лапласа - формула приближенного вычисления , а результат формулы Бернулли зависит от алгоритма в ПК, поэтому есть различия в ответе.