$$xy'+y=0, y(1)=0$$
Решить: \(xy'+y=0, y(1)=0\)$$\frac{xdy}{dx}=-y $$$$\frac{dy}{y}=-\frac{dx}{x} =>$$$$\int\frac{dy}{y}=-\int\frac{dx}{x}$$$$\ln|y|=-ln|x|+lnC => y=\frac{C}{x}$$$$y(1)=0 => 0=\frac{C}{1} => C=0$$Ответ: \(y=0\)