2 Голосов
|
|
Posted Апрель 10, 2013 by Вячеслав Моргун |
|
Знайдемо відповіді завдання
- Рівняння сторони \(AB\). Складемо рівняння сторони \(AB\), користуючись формулою прямої лінії, що проходить через дві задані точки \(A (4 ; 1 ) B (-3 ; -1 )\) $$\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1} $$$$\frac{y-1}{-1-1}=\frac{x-4}{-3-4} =>\frac{y-1}{-2}=\frac{x-4}{-7} =>y = \frac{2}{7}x-\frac{1}{7}$$ отримали рівняння сторони \(AB\) \(y = \frac{2}{7}x-\frac{1}{7}\). З цього рівняння знаходимо кутовий коефіцієнт прямої \(AB\): \(k_{AB} = \frac{2}{7}\)
- Рівняння висоти \(CH\), опущеної з точки \(C (7 ; -3)\) на сторону \(AB\) одержуємо за допомогою рівняння прямої лінії, що проходить через дану точку \(x_0;y_0\) за даним напрямком, означеним кутовим коефіцієнтом \(k_0\): $$y-y_0 = k_0(x-x_0)$$ Її кутовий коефіцієнт знаходимо за умови перпендикулярності прямих $$k_{AB}*k_{CH}=-1 =>k_{CH} = -\frac{1}{\frac{2}{7}}=>k_{CH} = -\frac{7}{2}$$ тоді знайдемо рівняння висоти \(CH\): $$y+3 = -\frac{7}{2}(x-7) =>y = -\frac{7}{2}x + \frac{43}{2}$$
- Рівняння медіани \(AM\). Знайдемо координати точки \(M\), яка ділить відрізок \(BC\) між точками \(B(-3 ; -1 ), C(7 ; -3)\) у відношенні \(1:1\). З умови випливає, що \(\lambda = \frac{AM}{MB} = 1\). Знаходимо координати точки \(M\), яка ділить даний відрізок у заданому відношенні \(\lambda =1\) $$x = \frac{x_1+\lambda x_2}{1+\lambda}=\frac{-3+1*7}{1+1}=2$$$$y = \frac{y_1+\lambda y_2}{1+\lambda}=\frac{-1+1*(-3)}{1+1}=-2$$Складемо рівняння медіани \(AM\), користуючись формулою прямої лінії, що проходить через дві задані точки \(A(4 ; 1 ), M(2 ; -2 )\) $$\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1} $$$$\frac{y-1}{-2-1}=\frac{x-4}{2-4} =>\frac{y-1}{-3}=\frac{x-4}{-2} =>y = \frac{3}{2}x-5$$ отримали рівняння медіани \(AM\) \(y = \frac{3}{2}x-5\).
- Точку перетину медiани \(AM\) та висоти \(CH\). Знайдемо координати точки перетину прямих $$\begin{cases}y = \frac{3}{2}x-5 \\y = -\frac{7}{2}x + \frac{43}{2}\end{cases}=> \begin{cases} y = \frac{3}{2}x-5 \\ \frac{3}{2}x-5 +\frac{7}{2}x - \frac{43}{2}=0 \end{cases}=>$$$$ \begin{cases} y = \frac{3}{2}x-5 \\ 5x - \frac{53}{2}=0 \end{cases}=>\begin{cases} y =2\frac{19}{20} \\ x =5,3 \end{cases}$$точка перетину медiани \(AM\) та висоти \(AH\) : \((5,3;2\frac{19}{20})\).
- Рівняння прямої , що проходить через точку \(C(7 ; -3)\) i паралельно стороні \(AB\). Одержуємо за допомогою рівняння прямої лінії, що проходить через дану точку \(x_0;y_0\) за даним напрямком, означеним кутовим коефіцієнтом \(k_0\): $$y-y_0 = k_0(x-x_0)$$ Її кутовий коефіцієнт знаходимо за умови паралельності прямих $$k_{AB}=k_{X} =\frac{2}{7}$$ тоді знайдемо прямої : $$y+3 = \frac{2}{7}(x-7) =>y = \frac{2}{7}x - 5$$
|
|