Категории		
	Topic: ЗНО 2013
			
				Пробне ЗНО 2013 року з математики . Завдання № 28.
			
			
			
		
		
				
				
								
				
			
	
			
			
			
			
		
	
		
					
	
... Завдання: Обчислить \(\log_ba \), якщо \(\log_3a=8\), \(\log_3b=5\)
Рішення: Найдем значения \(a\) и \(b\). $$\log_3a=8 =>$$воспользуемся свойством логарифма степени \(\log_ax^k=k\log_ax \). Применим формулу $$\log_3a=8 =>\log_3a=8\log_33 =>\log_3a=\log_33^8 =>a=3^8$$Аналогично и для второго логарифма $$\log_3b=5 =>\log_3...					
				
	
Темы:
	
	математика, пробне зно з математики, пробне зно 2013, зно 2013, пробне зовнішнє незалежне оці..., , пробне зовнішнє незалежне оці...
			
- Март 30, 2013 11:58 pm
- ·
			
				Пробне ЗНО 2013 року з математики . Завдання № 27.
			
			
			
		
		
				
				
								
				
			
			
			
		
	
		
					
	
...Завдання: Розважить систему нерівностей $$\begin{cases}0,5^{1-2x} > 0,5^{8+x}\\ \frac{4}{x-5} < 0\end{cases}$$У відповідь запишнить кількість усіх цілих розв’язків цієї системи. Якщо система має безліч цілих розв’язків, то у відповіді запишнить число 100.
Рішення: $$\begin{cases}0,5^{1-...					
				
			
				Пробне ЗНО 2013 року з математики . Завдання № 26.
			
			
			
		
		
				
				
								
				
			
			
			
		
	
		
					
	
...Завдання: При якому значенні  \( x \) функція \( y = 4-|20x+7|\) набуває найбільшого значення.
Рішення: Раскроем модуль и получим следующую систему$$y = \left[  \begin{gathered} \begin{cases} 4-20x-7 \\ 20x+7 \geq 0 \end{cases} \\ \begin{cases} 4+20x+7 \\ 20x+7 < 0 \end{cases} \end{gathered}\right.=>\left[  \begin{gathered} \begin{cases} -3-20...					
				
			
				Пробне ЗНО 2013 року з математики . Завдання № 25.
			
			
			
		
		
				
				
								
				
			
			
			
		
	
		
					
	
...Завдання: При кожному пострілі в мішень спортсмен влучав або в "десятку", або в "дев’ятку", за що йому нараховувалося 10 або 9 очок відповідно. За 10 пострілів він набрав 94 очки. Скільки разів з цих пострілів спортсмен влучив у "дев’ятку".
Рішення: При ...					
				
			
				Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 32.
			
			
			
		
		
				
				
								
				
			
	
		
					
	
...Зміст завдання: При якому найменшому цілому значенні параметра \(a\) рівняння $$\sqrt{2x+15} * (\sqrt{x^2+18x+81}-\sqrt{x^2-10x+25})=a*\sqrt{2x+15}$$ має лише два різні корені?Рішення: $$\sqrt{2x+15} * (\sqrt{x^2+18x+81}-\sqrt{x^2-10x+25}) -a*\sqrt{2x+15} =0 => \\ \sqrt{2x+15} * (\sqrt{x^2+18x+81}-\sqrt{x^2-10x+25}-a) =0 =>\\ \left\{ \begin{array}{l l}\sqrt{...					
				
	
Темы:
	
	математика, зно математика, зно 2012, зно 2013, , , pовнішнє незалежне оцінювання...
			
			
		
			
				Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 31.
			
			
			
		
		
				
				
								
				
			
	
		
					
	
...Зміст завдання: Основою прямої призми \(ABCDA_{1}B_{1}C_{1}D_{1}\) є рівнобічна трапеція \(ABCD\). Основа \(AD\) трапеції дорівнює висоті трапеції і в шість разів більша за основу \(BC\). Через бічне ребро \(CC_{1}\) призми проведено площину паралельно ребру \(AB\). Знайдіть ...					
				
	
Темы:
	
	математика, зно математика, зно 2012, зно 2013, , , pовнішнє незалежне оцінювання...
			
			
		
			
				Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 30.
			
			
			
		
		
				
				
								
				
			
	
		
					
	
...Зміст завдання: Обчисліть \( \frac{1}{\pi}\int_{-5}^{0} \sqrt{25-x^2}dx \), використовуючи рівняння кола \(x^2+y^2=25\), зображеного на рисунку.
Теорія до завдання: Геометричний зміст визначеного інтеграла. Якщо \(f (x)\) неперервна і позитивна на відрізку [a, b], то інтеграл є п...					
				
	
Темы:
	
	математика, зно математика, зно 2012, зно 2013, , , pовнішнє незалежне оцінювання...
			
			
		
			
				Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 29.
			
			
			
		
		
				
				
								
				
			
	
		
					
	
...Зміст завдання : У трикутнику ABC основа висоти AK лежить на продовженні сторони BC (див. рисунок). AK =6 см, KB = \(2\sqrt 3\). Радіус описаного навколо трикутника ABC кола дорівнює \(15\sqrt 3\). Визначте довжину AC.
Теорія до завдання:
Теорема синусів - теорема, що вс...					
				
	
Темы:
	
	математика, зно математика, зно 2012, зно 2013, , , pовнішнє незалежне оцінювання...
			
			
		
			
				Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 28.
			
			
			
		
		
				
				
								
				
			
	
		
					
	
...Зміст завдання: Обчисліть значення виразу \(\log_{a}{500}-\log_{a}{4}\), якщо \(log_{5}{a}=\frac{1}{4}\).
Теорія до завдання:Властивості логарифмів, які використовуються в даному завданні
Частка від ділення \(\ log_{a}{\frac{x}{y}} = \ log_a (x) - \ log_a (y) \)
Cтупінь \(\ log_{a}{(x^p)} = p\ log_a (x) \)
З...					
				
	
Темы:
	
	математика, зно математика, зно 2012, зно 2013, , , pовнішнє незалежне оцінювання...
			
			
		
			
				Зовнішнє незалежне оцінювання 2012 року з математики (1 сесія). Завдання № 27.
			
			
			
		
		
				
				
								
				
			
	
		
					
	
... 
Зміст завдання: Розв'яжіть систему рівнянь \(\left\{   \begin{array}{l l} y - x = 9\\\frac{x+8}{2y-5}=2\\  \end{array} \right.\). Запишить у відповідь добуток \(x_{0}*y_{0}\) якщо пара \((x_{0}; y_{0})\) є розв’язком цієї системи рівнянь.
Рішення: $$\left\{   \begin{array}{l l} y - x = 9\\\frac{x+8}{2y-5}=2\\  \end{array} \ri...					
				
	
Темы:
	
	математика, зно математика, зно 2012, зно 2013, , , pовнішнє незалежне оцінювання...
			
			
				
			
			
Топ блоггеров		
	

 Добавить новый блог
Добавить новый блог 
					

 Sheldon Cooper  (157)
 Sheldon Cooper  (157) Владислав Моргун  (15)
 Владислав Моргун  (15) Вячеслав Моргун  (13)
 Вячеслав Моргун  (13)