Processing math: 5%
Зарегистрироваться
Seekland Info сообщество взаимопомощи студентов и школьников. / Seekland Info спільнота взаємодопомоги студентів і школярів.

Методы решение типовых задач по теории вероятности.

Рассмотрим метод решения одного из видов типовых задач на знание и применение формулы умножения вероятностей на примере следующей задачи


Из колоды в 36 карт наудачу одна за другой извлекают две карты .
Найти вероятность того, что ими окажутся



  1. две дамы

  2. туз и дама

  3. две карты трефовой масти


Решение:


1. Введем события:
A - извлечена первая дама
B - извлечена вторая дама
C - извлечены две дамы


 


Тогда, по классической формуле вероятностей вероятность вынуть первую даму равна P(A)=\frac{4}{36}=\frac{1}{9}. Мы помним, что в колоде 4 дамы, т.е. 4 благоприятных исхода.
После того, как из колоды был извлечена одна дама, в колоде осталось 35 карт, среди которых 3 дамы. Следовательно, вероятность вынуть вторую даму, при условии, что первой была вынута дама: P(B/A)=\frac{3}{35}


 


Следовательно, вероятность извлечь две дамы равна:P(C)=P(A)*P(B/A)=\frac{1}{9}*\frac{3}{35}=\frac{1}{105}=0.0095


2. Введем события:
A - извлечена первым туз
B - извлечена второй дама
C - извлечены туз и дама


 


Тогда, по классической формуле вероятностей вероятность вынуть первым туз равна P(A)=\frac{4}{36}=\frac{1}{9}.
После того, как из колоды был извлечен туз, в колоде осталось 35 карт. Следовательно, вероятность вынуть второй даму, при условии, что из колоды уже вынули одну карту: P(B/A)=\frac{4}{35}


 


Следовательно, вероятность извлечь туз и даму равна:P(C)=P(A)*P(B/A)=\frac{1}{9}*\frac{4}{35}=\frac{4}{315}=0.0127


2. Введем события:
A - извлечена первой трефовая карта
B - извлечена второй трефовая карта
C - извлечены две трефовые карты


 


Тогда, по классической формуле вероятностей вероятность вынуть первой трефовую карту P(A)=\frac{9}{36}=\frac{1}{4}. В колоде 4 масти по 9 карт.
После того, как из колоды была извлечена одна карта трефовой масти, в колоде осталось 35 карт и 8 карт трефовой масти. Следовательно, вероятность вынуть вторую карту трефовой масти, при условии, что из колоды уже вынули одну трефовую карту: P(B/A)=\frac{8}{35}


 


Следовательно, вероятность извлечь две трефовые карты:P(C)=P(A)*P(B/A)=\frac{1}{4}*\frac{8}{35}=\frac{2}{35}=0.057


 

Captcha Challenge
Reload Image
Type in the verification code above